4 research outputs found

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Radiofrequency and microwave properties of protein structures

    No full text
    Elektromagnetická charakterizace biomolekulárních nanostruktur poskytuje hlubší porozumění interakcím elektromagnetických vln s polární a strukturně komplexní biologickou hmotou. Navíc otevírá nové možnosti pro zkoumání takových struktur pomocí elektromagnetického pole za cílem zesílení nebo změny jejich funkce a za cílem rozvoje nových možností budoucích elektrodynamických a elektronických terapeutických a diagnostických metod v biotechnologiích a medicíně.Electromagnetic characterization of biomolecular nanostructures is providing deeper understanding of the interaction of electromagnetic waves with polar and structurally complex biological matter. It is also opening a new way for possible probing of these structures by electromagnetic ?eld, to enhance or change their function and to explore novel paths to future electrodynamic and electronic therapeutic and diagnostic methods in biotechnology and medicine. The study had ambitions to (i) develop a model describing the electromagnetic ?eld coupling to "biological-like" nanostructures, (ii) design and develop appropriate tools for investigation of biomolecules, and (iii) apply these tools to evaluate the dielectric response of tubulin and mikrotubule solution in the broad frequency range

    Microwave absorption by nanoresonator vibrations tuned with surface modification

    No full text
    Elucidating the physical and chemical parameters that govern viscous damping of nanoresonator vibrations and their coupling to electromagnetic radiation is important for understanding the behavior of matter at the nanoscale. Here we develop an analytical model of microwave absorption of a longitudinally oscillating and electrically polar rod-like nanoresonator embedded in a viscoelastic fluid. We show that the slip length, which can be tuned via surface modifications, controls the quality factor and coupling of nanoresonator vibration modes to microwave radiation. We demonstrate that the larger slip length brings the sharper frequency response of the nanoresonator vibration and electromagnetic absorption. Our findings contribute to design guidelines of fluid embedded nanoresonator devices
    corecore